
Contents

1 Getting Started
1.1 Requirements
1.2 Downloading the software and sample datasets
1.3 Installation

2 Grads or Gerl: Deciding which Interface is Right for You
3 Tutorial I: Object Oriented Interface (Grads)

3.1 Opening files
3.2 Querying the GrADS state
3.3 Parsing GrADS output, the traditional way
3.4 The Set method
3.5 Interfacing to the Perl Data Language (PDL)
3.6 Terminating your GrADS session

4 Tutorial II: Procedural Interface (Gerl)
4.1 Opening files
4.2 Basic syntax
4.3 Executing native GrADS commands in a here document
4.4 Querying the GrADS state
4.5 Parsing GrADS output, the traditional way
4.6 The Set command
4.7 Interfacing to the Perl Data Language (PDL)
4.8 Terminating your GrADS session

5 Manual Pages
5.1 Grads.pm: Object Oriented Interface
5.2 Gerl.pm: Procedural Interface
5.3 Gadl: An interactive shell based on PerlDL

Perl Interface to GrADS
From OpenGrads Wiki

The
Perl

interface to GrADS is an alternative method of scripting GrADS that can take
advantage of the unique capabilities of Perl (http://en.wikipedia.org/wiki/Perl).
Here are a few reasons for scripting GrADS in Perl:

You are an experienced Perl (http://en.wikipedia.org/wiki/Perl) programmer
new to GrADS and do not want to spend the time learning a new scripting
language.

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

1 of 15 04/17/2016 02:24 PM

You need some GrADS functionality inside your regular Perl script, say, parse
the contents of a GrADS readable dataset or want to store your metadata in a
MySQL database.
You would like to transparently issue GraDS commands inside your cgi-bin
(http://en.wikipedia.org/wiki/Common_Gateway_Interface) script and
produce images for your dynamic website.
You want to query your OpenDAP (http://www.opendap.org/index.html)
server and figure out which is the latest forecast available before actually
opening the dataset.
You would like to use PerlTK (http://www.perltk.org/) or any other toolkit to
write a Graphical User Interface for GrADS.
Your script is getting too complex and you could use an object oriented
approach to better organize and reuse your code.
You would like to explore GrADS ability to slice and dice a meteorological
dataset or OpenDAP URL, but prefer to use Perl Data Language (PDL)
(http://pdl.perl.org/) to perform further analysis and visualization your
dataset.

The Perl interface to GrADS, which is similar to the Python interface, enables full
scripting capability for GrADS in Perl, and can be used together with the classic
GrADS scripting language (http://grads.iges.org/grads/gadoc/script.html#intro).
This interface comes in 2 flavors: 1) an object oriented module (Grads.pm), and 2) a
more procedural module (Grads::Gerl.pm), built on top of Grads.pm, that has more of
the look and feel of a classic GrADS script. For interactive work you may want to
try gadl, a customization of the Perl Data Language (PDL) for GrADS.

In the remaining of this document I will assume that you have some familiarity
with GrADS and Perl.

Getting Started

Requirements

You will need Perl (http://www.perl.org) 5 and GrADS (http://grads.iges.org/grads)
Version 1.9.0 or later, or any OpenGRADS release. If you would like to use GrADS
with the Perl Data Language (PDL) (http://pdl.perl.org) you will need to install this
Perl module as well. These can be downloaded at their respective websites. These
packages are available for most Linux distributions, MacOS X and Microsoft
Windows, as well as in many flavors of Unix.

Downloading the software and sample datasets

The Perl GrADS modules can be downloaded from the OpenGrADS download
(http://sourceforge.net/project/showfiles.php?group_id=161773&

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

2 of 15 04/17/2016 02:24 PM

package_id=256759) area at SourceForge.

For running the tutorials and examples below you need to download the sample
data file model.nc (http://opengrads.org/test_data/model.nc).

Installation

This installs the usual way. Start by untarring the distribution:

% tar xvfz gerl-1xx.tar.gz
% cd gerl-1.xx

If you have admin privileges:

% perl Makefile.PL
% make
% make test
% make install (needs admin privileges)

or else

% perl Makefile.PL PREFIX=$HOME (for example)
% make
% make test
% make install

In this case, make sure to set the environment variable PERL5LIB to something like:

$HOME/perl5/site_perl/5.8.8

and that you have the following directory in your PATH

$HOME/local/bin

Grads or Gerl: Deciding which Interface is Right
for You

In the remainder of this document we will use Grads and Grads::Gerl to denote the
Perl modules of same name, and GrADS to refer to the GrADS application that
these modules interface to.

There are two basic modules implementing the Perl interface to the GrADS
application:

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

3 of 15 04/17/2016 02:24 PM

Grads
The module Grads implements an object oriented interface to GrADS by means
of bi-directonal pipes. It starts GrADS, sends commands to it, parses its
output and return codes, and provide high level interfaces to query GrADS
properties and dimension environment.

Gerl
The module Grads::Gerl implements a procedural interface to GrADS.
Grads::Gerl simply instantiates a single Grads object, and provides several
functions that attempt to emulate the look and feel of the traditional GrADS
application.

Let's examine an example comparing the two approaches. Consider a simple
script that starts GrADS, opens a file and displays a variable using Gerl:

 use Grads::Gerl;
 grads { Bin=>"gradsnc", Window=>1 };
 Open "model.nc";
 display "ua;va";
 quit;

Using the OO interface implemented in Grads this example would look like:

 use Grads;
 $ga = new Grads { Bin=>"gradsnc", Window=>1 };
 $ga->Open "model.nc";
 $ga->cmd "display "ua;va";
 $ga = undef;

These are not that different, but as the TUTORIAL secions will illustrate,
Grads::Gerl's syntax is closer to the traditional GrADS command line, and provides
a nice facility to evaluate a batch of GrADS commands with a convenient way for
catching exceptions.

The wrapper script gadl goes a step further: it customizes the Perl Data Language
(PDL) shell (perldl), automatically loading Gerl and providing a command line
interface to GrADS. This combination provides a powerful and convenient
environment for advanced geophysical data analysis and visualization. PDL
complements GrADS quite nicely with a wealth of numerical methods and
visualization tools. Here is how one would write the example above using gadl.
From your OS command line you start gadl:

 % gadl -nc

Then at the gadl-> command line prompt enter

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

4 of 15 04/17/2016 02:24 PM

 o model.nc
 d ua;va
 q

No semi-colons, no double quotes, and even additional shortcuts such as o for
"Open". See the COMMAND LINE FILTER FOR PDL section in the manual page
(http://opengrads.org/doc/perl/Gerl/) for a description of all the shorthands
provided by Grads::Gerl when running under perldl.

The next two sections present a quick tutorial to modules Grads and Grads::Gerl.
Consult the Manual Pages (http://opengrads.org/doc/) for a detailed description of
these modules.

Tutorial I: Object Oriented Interface (Grads)

For running this tutorial you will need a sample GrADS dataset. Please download
model.nc from

http://opengrads.org/sample_data.

If you are new to GrADS you may want to read the Tutorial on

http://grads.iges.org/grads/gadoc/tutorial.html

This document is not a GrADS tutorial but rather a tutorial of the Perl interface to
GrADS.

In this tutorial we will use the Data::Dumper module to examine the contents of
hashes returned by some of the methods. So, we start by using these 2 modules:

 use Grads;
 use Data::Dumper;

Let's create a Grads object by starting the gradsnc binary in landscape mode, with
an active graphics window:

 $ga = new Grads { Bin=>"gradsnc", Port=>0, Window=>1, };

The cmd method is used to send generic commands to GrADS, e.g.,

 $rc = $ga->cmd("q config");

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

5 of 15 04/17/2016 02:24 PM

The return code $rc will be 0 if all went well, and non-zero if the particular GrADS
command exited with an error.

Opening files

The Open method opens a GrADS dataset in any of the supported formats:

 $fh = $ga->Open("wrong_file.nc") or
 warn ">>> Cannot open wrong_file.nc as expected, proceeding.\n";

In this particular case we fed it a bogus file name to force an error condition.
Let's try again, this time with the model.nc file that you just downloaded:

 $fh = $ga->Open("model.nc") or
 die "cannot open model.nc but it is needed for testing, aborting ";

Open returns a file handle $fh with useful metadata about the file just read. You
can use Dumper for examining the contents of $fh:

 print "\n>>> File opened: " . Dumper($fh) . "\n";

A slightly reformatted output follows:

 $fh = {
 'fid' => '1',
 'bin' => 'model.nc',
 'desc' => 'model.nc',
 'title' => '',
 'type' => 'Gridded'
 'nvars' => 8,
 'vars' => ['ps','ts','pr','ua','va','zg','ta','hus'],
 'var_levs' => ['0', '0', '0', '7', '7','7', '7', '7'],
 'nx' => '72',
 'ny' => '46',
 'nz' => '7',
 'nt' => '5',
 };

Querying the GrADS state

Similarly, the Query method returns a query handle with information about the
particular GrADS property. Here are a few examples:

 $qh = $ga->Query("time");
 print "\n>>> Time handle: "; print Dumper($qh);

 $fh = $ga->Query("file");

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

6 of 15 04/17/2016 02:24 PM

 print "\n>>> File handle: "; print Dumper($fh);

 $dh = $ga->Query("dims");
 print "\n>>> Dim handle: "; print Dumper($dh);

As of this writing only a handfull of GrADS query properties are implemented by
the Query method, but this list is growing with each release. Be sure to contribute
any extension you add. In the meantime, you can use the rword and rline methods
to parse the output of native query command. Read on.

Parsing GrADS output, the traditional way

Traditionally, the built in GrADS scripting language (gs) includes functions sublin
and subwrd to parse the lines and words within line of each GrADS command
issued. To aid the conversion of gs scripts to Perl, we have included methods
rword and rline which give access to words and lines in the GrADS output stream.
The rword(i,j) method returns the j-th word in the i-th line of the GrADS command
just issued, viz.

 $ga->cmd("q config");
 for $i (1...$ga->{nLines}) {
 printf("RWORD %3d: ", $i);
 $j=1; # starts from 1
 while ($word=$ga->rword($i,$j)) {
 print $word . " ";
 $j++;
 }
 print "\n";
 $i++;
 }

To obtain a given output line, use the rline method:

 print "RLINE *3: " . $ga->rline(3) . "\n\n";

The Set method

The Set method is used to issue a batch of GrADS set commands, stored in an
array. This is particularly useful to define a graphics context that can be reused
prior to issuing each display command. Here is an example:

 my @gc;
 $ga->{Echo} = 1;
 push @gc, "grads off";
 push @gc, "gxout shaded";
 $rc = $ga->Set(\@gc);

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

7 of 15 04/17/2016 02:24 PM

Interfacing to the Perl Data Language (PDL)

Method Exp allows you to export a GrAS variable into a Perl Data Language (PDL)
object, commonly refered to as piddles:

 $ps = $ga->Exp ps;
 print "ps = $ps";

The output piddle ps is sometimes refered to as a GrADS field as it register a grid,

 $grid = $ps->gethdr()

which contains information about the coordinate variables (longitude, latitude,
vertical level and time), in addition to low level metadata for exchanging data
with GrADS. (This is the same concept of field introduced by Earth-system
Modeling Framework, ESMF). Alternatively, you can explicitly grab the $grid
during export,

 ($ps,$grid) = $ga->Exp ps;

You can also import a piddle with the Imp method, provided one specifies the
necessary grid metadata:

 $logps = log($ps);
 $rc = $ga->Imp logps, $logps, $grid;
 $rc = $ga->display logps;

Of course, there is more than one way of doing this. Having a $grid you can use
the piddle's sethdr() method to regsiter it:

 $logps->sethdr($grid);

and then there is no need to explicitly pass $grid to method Imp:

 $rc = $ga->Imp logps, $logps;
 $rc = $ga->Display logps;

Given the appropriate metadata, one can also display a piddle in GrADS. If all one
wants to do is to display a variable there is no need to import it first as we did
above. In the previous example, you could display $logps directly:

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

8 of 15 04/17/2016 02:24 PM

 $rc = $ga->Display $logps;

The current implementation requires that both x and y dimensions be varying. In
addition, both z and t dimensions can be varying, individually or at the same time.
Just like GrADS itself, Display cannot handle both z and t varying at the same time.
Here is an example exporting a 4D variable:

 $ga->cmd "set t 1 5";
 $ga->cmd "set z 1 7";
 $ua = Exp ua;
 print $ua->dims;

Terminating your GrADS session

As usual in perl, the Grads destructor will be invoked when the object gets out of
scope of when it is explitly undefined like this:

 $ga = undef;

This will cause a quit to be sent to GrADS which in turn will end the connection.

Tutorial II: Procedural Interface (Gerl)

Since Gerl is based on the Grads module you are strongly encouraged to read the
previous tutorial first.

For running this tutorial you will need the same sample GrADS dataset used in
Tutorial I. Please download model.nc from

http://opengrads.org/sample_data.

If you are new to GrADS you may want to read the Tutorial on

http://grads.iges.org/grads/gadoc/tutorial.html

This document is not a GrADS tutorial but rather a tutorial of the Perl interface to
GrADS.

In this example we will use the Data::Dumper module to examine the contents of hashes returned by some of the methods. So

 use Grads::Gerl;

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

9 of 15 04/17/2016 02:24 PM

 use Data::Dumper;

To start the GrADS process we use the grads function:

 $rc = grads { Bin=>"gradsnc", Window=>1 };

For this and subsequent function calls, the return code variable $rc will be zero if
the command completed successfully and non-zero if an error occurred. Usually
you would follow the command above with something like this:

 die "cannot start grads" if ($rc);

The function ga_() is used to send generic commands to GrADS, e.g.,

 $rc = $ga "q config";

Opening files

The Open() function opens a GrADS dataset in any of the supported formats:

 $fh = Open "wrong_file.nc" or
 warn ">>> Cannot open wrong_file.nc as expected, proceeding.\n";

In this particular case we fed it a bogus file name to force an error condition.
Let's try again, this time with the model.nc file that you just downloaded:

 $fh = Open "model.nc" or
 die "cannot open model.nc but it is needed for testing, aborting ";

Open() returns a file handle $fh with useful metadata about the file just read. You
can use Dumper for examining the contents of $fh:

 print "\n>>> File opened: " . Dumper($fh) . "\n";

A slightly reformatted output follows:

 $fh = {
 'fid' => '1',
 'bin' => 'model.nc',
 'desc' => 'model.nc',
 'title' => '',
 'type' => 'Gridded'

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

10 of 15 04/17/2016 02:24 PM

 'nvars' => 8,
 'vars' => ['ps','ts','pr','ua','va','zg','ta','hus'],
 'var_levs' => ['0', '0', '0', '7', '7','7', '7', '7'],
 'nx' => '72',
 'ny' => '46',
 'nz' => '7',
 'nt' => '5',
 };

Basic syntax

Next we show examples of some simple grads commands. Notice how the word
print is always escaped to avoid conflict with Perl's print command:

 enable 'print gerl-test.gx';
 set lev, 500;
 set x, 1;
 set gxout, shaded;

The use of commas in the previous block will come naturally to perl programmers,
but may be confusing for someone coming from the classic Grads command line
with no exposure to Perl. One of Perl's mottos is There is more than one way to do
it (TIMTOWTDI, usually pronounced Tim Toady), and the first set command above
could be written in a number of equivalent ways:

 set("lev","500');
 set(lev,500); # this will not work is lev is defined somewhere
 # a function name
 set("lev 500");
 set lev, 500;
 set "lev 500";
 ga_ "set lev 500";

However, the syntax

 set lev 500

does not work because the arguments of set must be specified as a list. The gadl
front-end to perldl removes this restriction as it provides a command line filter to
special handle GrADS commands.

Like any Perl script, flow control and variable interpolation works as usual:

 foreach $var (ps, ta) {
 foreach $t (1..5) {
 set t, $t;
 define tz, "ave($var,lon=0,lon=360)";
 display tz;

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

11 of 15 04/17/2016 02:24 PM

 draw title, "Zonal Means: $var at t=$t";
 printim "gerl-$var-$t.png";
 gaprint; # print is already taken, so use gaprint instead
 clear;
 }
 }

Executing native GrADS commands in a here document

A unique feature of Gerl compared to its sibiling Grads is that one can enter a batch
of GrADS commands in the form of a here document as in this code fragment:

 $rc = ga_ <<"EOF";
 set lev 700
 set lon 0 360
 set t 2
 d ua;va;sqrt(ua*ua+va*va)
 draw title Winds at 700 hPa
 printim gerl-winds.png
 EOF

Querying the GrADS state

These commands are sent to GrADS, one at time, and in case of a non-zero error
return ga_() stops execution and returns the first non-zero error code it
encounters. This feature is particularly useful to embed existing GrADS code
without the need to convert to Perl syntax. (A really useful feature would be a
function that evaluates code fragments from the GrADS built in scripting
language.)

Like the Open() function, Query() returns a query handle with information about the
particular GrADS property. Here are a few examples:

 $qh = Query "time";
 print "\n>>> Time handle: "; print Dumper($qh);

 $qh = Query "file";
 print "\n>>> Time handle: "; print Dumper($qh);

 $dh = Query "dims";
 print "\n>>> Dim handle: "; print Dumper($dh);

As of this writing only a handfull of GrADS query properties are implemented by
Query(), but this list is growing with each release. Be sure to contribute any
extension you add. In the meantime, you can use the rword and rline functions to
parse the output of native query command. Read on.

Parsing GrADS output, the traditional way

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

12 of 15 04/17/2016 02:24 PM

Traditionally, the built in GrADS scripting language (gs) includes functions sublin
and subwrd to parse the lines and words within line of each GrADS command
issued. To aid the conversion of gs scripts to Perl, we have included functions
rword and rline which give access to words and lines in the GrADS output stream.
The rword(i,j) function returns the j-th word in the i-th line of the GrADS
command just issued, viz.

 ga_ "q config");
 for $i (1...$Grads::Gerl::Ga->{nLines}) {
 printf("RWORD %3d: ", $i);
 $j=1; # starts from 1
 while ($word=rword($i,$j)) {
 print $word . " ";
 $j++;
 }
 print "\n";
 $i++;
 }

To obtain a given output line, use the rline function:

 print "RLINE *3: " . rline(3) . "\n\n";

The Set command

The Set() function is used to issue a batch of GrADS set commands, stored in an
array. This is particularly useful to define a graphics context that can be reused
prior to issuing each display command. Here is an example:

 my @gc;
 $Grads::Gerl::Ga->{Echo} = 1;
 push @gc, "grads off";
 push @gc, "gxout shaded";
 $rc = Set \@gc;

Interfacing to the Perl Data Language (PDL)

Function Exp allows you to export a GrAS variable into a Perl Data Language
(PDL) object, commonly refered to as piddles:

 $ps = Exp ps;
 print "ps = $ps";

The output piddle ps is sometimes refered to as a GrADS field as it register a grid,

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

13 of 15 04/17/2016 02:24 PM

 $grid = $ps->gethdr()

which contains information about the coordinate variables (longitude, latitude,
vertical level and time), in addition to low level metadata for exchanging data
with GrADS. (This is the same concept of field introduced by Earth-system
Modeling Framework, ESMF). Alternatively, you can explicitly grab the $grid
during export,

 ($ps,$grid) = Exp ps;

You can also import a piddle with the Imp function, provided one specifies the
necessary grid metadata:

 $logps = log($ps);
 Imp logps, $logps, $grid;
 display logps;

Of course, there is more than one way of doing this. Having a $grid you can use
the piddle's sethdr() function to regsiter it:

 $logps->sethdr($grid);

and then there is no need to explicitly pass $grid to function Imp:

 $Imp logps, $logps;
 Display logps;

Given the appropriate metadata, one can also display a piddle in GrADS. If all one
wants to do is to display a variable there is no need to import it first as we did
above. In the previous example, you could display $logps directly:

 Display $logps;

The current implementation requires that both x and y dimensions be varying. In
addition, both z and t dimensions can be varying, individually or at the same time.
Just like GrADS itself, Display cannot handle both z and t varying at the same time.
Here is an example exporting a 4D variable:

 ga_ "set t 1 5";
 ga_ "set z 1 7";
 $ua = Exp ua;

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

14 of 15 04/17/2016 02:24 PM

 print $ua->dims;

Terminating your GrADS session

To terminate your GrADS session just enter:

 quit;

This will cause a quit to be sent to GrADS which in turn will end the connection.

Manual Pages

Grads.pm: Object Oriented Interface

Consult the Grads.pm Manual Page (http://opengrads.org/doc/perl/Grads/)
translated from POD. Do not edit these pages, instead get the the source code
Grads.pm, update the documentation there, and use pod2html to translate to html.

Gerl.pm: Procedural Interface

Consult the Gerl.pm Manual Page (http://opengrads.org/doc/perl/Gerl/) translated
from POD. Do not edit these pages, instead get the the source code Gerl.pm, update
the documentation there, and use pod2html to translate to html.

Gadl: An interactive shell based on PerlDL

Consult the Gadl Manual Page (http://opengrads.org/doc/perl/gadl) translated
from POD. Do not edit these pages, instead get the the source code gadl, update
the documentation there, and use pod2html to translate to html.

Retrieved from "http://opengrads.org
/wiki/index.php?title=Perl_Interface_to_GrADS&oldid=694"

This page was last modified on 7 December 2008, at 16:50.

Perl Interface to GrADS - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=Perl_In...

15 of 15 04/17/2016 02:24 PM

