
Contents

1 Important
2 Introduction
3 Installing Pre-compiled User Defined Extensions

3.1 Requirements
3.2 Download
3.3 Installation
3.4 Verifying your installation

4 Building User Defined Extensions from Sources
5 Writing your own User Defined Extensions

5.1 Background: How GrADS loads its extensions
5.2 Writing extensions in C
5.3 Writing extensions in Fortran
5.4 Producing documentation for your extensions

6 Documentation for Contributed User Defined Extensions

User Defined Extensions
From OpenGrads Wiki

Important

The instructions in this page are for GrADS v1.9.0-rc1. For the OpenGrADS
Bundle v2.0.a5.oga.3 and later the OpenGrADS extensions are already included
and require no installation. The same is true for any the Win32 Superpacks,
including v1.9.0-rc1.

Additional information about the OpenGrADS User Defined Extensions for GrADS
v2.0 will be posted here soon.

Introduction

One of the core activities in OpenGrADS is the development of high performance
user defined commands and functions. The classic user defined functions (UDFs)
in GrADS relies on disk files for the transmission of data to and from the UDF.
While this approach is somewhat robust and language independent, reading the
exchange file is somewhat tedious and the unnecessary I/O leads to a large

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

1 of 8 04/17/2016 02:27 PM

performance penalty.

Installing Pre-compiled User Defined Extensions

Requirements

GrADS v1.9.0 or later, installed

Download

These are available on our sourceforge download page (http://sourceforge.net
/project/showfiles.php?group_id=161773&package_id=256757).

Installation

First download and install GrADS itself. The GrADS executables are typically
placed in the directory /usr/local/bin. The libraries contained in this tar file are
typically placed in the directory /usr/local/bin/gex. If you do not have write
permission for your /usr/local/bin directory, you can put them in the ~/bin/gex
subdirectory of your home directory or any other directory of your choice.
Henceforth, we will refer to the GrADS installation directory as $GABIN, and assume
that you install the dynamic extensions in subdirectory gex/.

Whatever location you choose to install the UDXTs you must set the environment
variable GAUDXT to point to the location of your User Defined Extension Table. To
use the one in this distribution set

 export GAUDXT=$GABIN/gex/udxt (sh, ksh, bash)
 setenv GAUDXT $GABIN/gex/udxt (csh, tcsh)

You may want to familiarize yourself with the contents of the file
"$GABIN/gex/udx" and comment out any function that may cause any conflict to
you.

In addition, you need to let your operating system know where to find these
shared objects (dynamic libraries). Typically

Linux, most Unices:

export LD_LIBRARY_PATH=$GABIN/gex:$LD_LIBRARY_PATH (sh, ksh, bash)
setenv LD_LIBRARY_PATH $GABIN/gex:$LD_LIBRARY_PATH (csh, tcsh)

IRIX64 Note:

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

2 of 8 04/17/2016 02:27 PM

You man want to set the environment variable LD_LIBRARYN32_PATH for New
32-bit ABI and LD_LIBRARY64_PATH for 64-bit programs, in addition the good old
LD_LIBRARY_PATH. If this still does not work, enter the full pathnames in your
"udxt" file.

Mac OS X

export DYLD_LIBRARY_PATH=$GABIN/gex:$DYLD_LIBRARY_PATH (sh, ksh, bash)
setenv DYLD_LIBRARY_PATH $GABIN/gex:$DYLD_LIBRARY_PATH (csh, tcsh)

Verifying your installation

Start GrADS and enter

 ga-> query udct
 ga-> query udft

To see a list of all your user defined commands and functions. You may want to try

 ga-> hello

which should print "Hello, World" to your screen.

Building User Defined Extensions from Sources

Although in principal you do not need to build GrADS to build the extensions, it
does gives flexibility to have the full sources around. The most convenient way is
to check out module Grads (notice the capital "G"), which includes the standard
GrADS sources as well as the extra extensions directory:

 % cd workspace
 % cvs -d ... co -P Grads # Notice capital "G"

You can ensure maximum compatibility between your UDXTs and the GrADS
binaries they extend by building GrADS at the same time; for instructions, see
Building GrADS from Sources. In the very least you should configure your source
tree

 % cd Grads
 % ./configure

For compiling and creating a tarball with your extensions enter

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

3 of 8 04/17/2016 02:27 PM

 % make gex-dist

For simply building it,

 % cd extensions
 % make
 % make install bindir=/path/to/bin/dir

You can also build from the individual directories,

 % cd hello
 % make

The GNUmakefiles for the individual packages include the fragment gex.mk and
does not yet make uso of automake. Future enhancements include compilers
wrappers such as gexcc, gexf77 and gexf90.

For adding your own packages, create a directory under extensions/ and copy over
the GNUmakefile from one of the other packages to your newly created directory.
The hello package is an excellent place to start.

Writing your own User Defined Extensions

This section has not been written yet. In the meantime, examine the available
sources under extensions/ as discussed in the previous section. Feel free to
complete the documentation.

Background: How GrADS loads its extensions

User Defined Extensions in GrADS are loaded the same way web browsers load
their plug-ins. It makes use of the dlopen, dlsym() and dlclose() function calls, a
device introduced by Sun Microsystems (http://en.wikipedia.org
/wiki/Sun_microsystems) back in the 1980's that are available in most modern
platforms. Let's look at a simple example that loads the cos function from the
standard C math library, libm.so:

#include <stdio.h>
#include <dlfcn.h>

int main(int argc, char **argv) {
 void *handle;
 double (*cosine)(double);
 char *error;

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

4 of 8 04/17/2016 02:27 PM

 /* Open the existing libray libm.so */
 handle = dlopen ("libm.so", RTLD_LAZY); /* use libm.dylib on a Mac */
 if (!handle) {
 fprintf (stderr, "%s\n", dlerror());
 exit(1);
 }
 /* Retrieve a pointer to the function "cos" provided by libm */
 dlerror(); /* Clear any existing error */
 *(void **) (&cosine) = dlsym(handle, "cos");
 if ((error = dlerror()) != NULL) {
 fprintf (stderr, "%s\n", error);
 exit(1);
 }
 /* Print result and close the library */
 printf ("%f\n", (*cosine)(0.2));
 dlclose(handle);
 return 0;
}

The function dlopen() opens a shared library, while dlsym() returns a function
pointer given a string with the name of a function in the library; you can guess
what dlclose() does. Do a man dlopen for information on the other parameters. The
code fragment above opens the math library libm.so, get a pointer to the cosine
function cos and executes it. If you save this code fragment in file test.c, you
usually compile and run it like this

% gcc -o test test.c -ldl
% ./test
0.980067

Now, you do not have to rely on system libraries, you can write your own loadable
libraries. Consider this simple implementation of the cosine function keeping the
leading terms of its Taylor series (http://en.wikipedia.org/wiki/Taylor_series):

double cos (double x) {
 return (double) (1.0 - x*x*(0.5 - x*x/24.));
}

If one saves this code fragment to a file called mycos.c, on many sytems, including
Linux, a shared library (dynamically linked library) can be create with the
command line

% gcc -shared -o mycos.so mycos.c

The particular command for creating a shared library varies from system to
system. On Mac OS X, the syntax is

% gcc -c mycos.c

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

5 of 8 04/17/2016 02:27 PM

% libtool -dynamic -o mycos.dylib mycos.o

The OpenGrADS build mechanism can produce shared libraries for the most
common systems. However, if you need to port extensions to a new unsupported
system, getting this simple example to work is a good starting point.

Now that you have your own implementation of the cosine function, all you need
to do is to change one line in the test.c sample code above (in a real application
you would read these names from a file). Simply replace the line

 handle = dlopen ("libm.so", RTLD_LAZY);

with this one

 handle = dlopen ("./mycos.so", RTLD_LAZY);

Recompile and run:

% gcc -o test test.c -ldl
% ./test
0.980067

This simple example illustrates how a user defined function can be incorporated
in an application at run time. The name of the library and function does not have
to be known at compile time, it could be read from an external file. This is
precisely how we implemented UDXTs in GrADS. A text file, the so-called UDXT
table, contains the name of shared libraries and functions within. GrADS loads
this table at start up, but loads an extension only upon the first usage. We
ellaborate on these points next.

Writing extensions in C

Writing extensions in Fortran

Producing documentation for your extensions

Although not a strict requirement, we have been using 'Perl On-line
Documentation' (http://perldoc.perl.org/perlpod.html) (POD) mark up syntax for
documenting the contributed the user defined extensions directly at the source
code. POD is a simple and yet adequate mark up language for creating basic Unix
style man pages, and there are converters to html, MediaWiki, etc. In adittion, the
perldoc utility can be used to display this documentation on the screen, e.g.,

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

6 of 8 04/17/2016 02:27 PM

 % perldoc re

Or else, run this file through cpp to extract the POD fragments:

 % cpp -DPOD -P < re.c > re.pod

and place re.pod in a place perldoc can find it, like somewhere in your path. To
generate HTML documentation:

 % pod2html --header < re.pod > re.html

To generate MediaWiki documentation:

 % pod2wiki --style mediawiki < re.pod > re.wiki

If you have pod2html and pod2wiki installed on your system (if not, get them from
CPAN (http://search.cpan.org), there are targets in the gex.mk fragment for these:

 % make re.html
 % make re.wiki

For having POD documentation generated (ans installed) automatically add this to
your GNUmakefile:

 export PODS=re.pod

(of course, replace re with the actual name of your file containing the POD
documentation.) See the re UDXT for a example of POD documentation built right
in the source code. The POD documentation is installed along with the GrADS
binaries so that perldoc can access it automatically.

Documentation for Contributed User Defined
Extensions

Consult the Manual Pages (http://opengrads.org/doc) for documentation about the
individual User Defined Extensions.

Retrieved from "http://opengrads.org
/wiki/index.php?title=User_Defined_Extensions&oldid=794"

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

7 of 8 04/17/2016 02:27 PM

This page was last modified on 26 March 2009, at 19:13.

User Defined Extensions - OpenGrads Wiki http://opengrads.org/wiki/index.php?title=User_D...

8 of 8 04/17/2016 02:27 PM

